4 resultados para transcriptome

em Repositorio Institucional de la Universidad de Málaga


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowing a cell’s transcriptome is a fundamental requisite in order to analyze its response to the environment. Microarrays have supposed a revolution on this field as they are able to yield an overview of gene expression at any environmental condition on a genome-wide scale. This technique consists in the hybridisation of a nucleic acid sample, previously marked, with a probe (which might be made up of cDNA, oligonucleotides or PCR products) anchored to a solid surface (made of glass, plastic, silicon...) giving as a result a dot grid which reveals, after image analysis, which genes are being expressed. Nevertheless, this only can be achieved if information on the species genome has been generated. Different kinds of expression microarrays exist attending to the probe’s nature and the method used in its synthesis. In this poster two of these will be treated: Spotted Microarrays, for which the probe is synthesised prior to its fixation to the array and allow the analysis of two targets simultaneously. They can be easily customized, but lack high reproducibility and sensitivity. Oligonucleotide Microarrays, which are characterized by the direct printing of the probe on the array. In this case the probes consist on, invariably, oligonucleotides that are complementary to a small fraction of the gene it is representing at the microarray. Their application is somewhat restricted. This fact, however, makes them more reproducible. Currently, the approach towards the transcriptome studies from the Next Generation Sequencing technologies offers a large volume of information in a short amount of time needing less previous information on the target organism than that needed by microarrays, but their expensive price limits their use. The versatility of the latter, together with their reduced costs in comparison to other techniques, makes them an interesting resource in applications that may need less complexity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conifer trees divert large quantities of carbon into the biosynthesis of phenylpropanoids, particularly to generate lignin, an important constituent of wood. Since phenylalanine is the precursor for phenylpropanoid biosynthesis, the precise regulation of phenylalanine synthesis and utilization should occur simultaneously. This crucial pathway is finely regulated primarily at the transcriptional level. Transcriptome analyses indicate that the transcription factors (TFs) preferentially expressed during wood formation in plants belong to the MYB and NAC families. Craven-Bartle et al. (2013) have shown in conifers that Myb8 is a candidate regulator of key genes in phenylalanine biosynthesis involved in the supply of the phenylpropane carbon skeleton necessary for lignin biosynthesis. This TF is able to bind AC elements present in the promoter regions of these genes to activate transcription. Constitutive overexpression of Myb8 in white spruce increased secondary-wall thickening and led to ectopic lignin deposition (Bomal et al. 2008). In Arabidopsis, the transcriptional network controlling secondary cell wall involves NAC-domain regulators operating upstream Myb transcription factors. Functional orthologues of members of this network described have been identified in poplar and eucalyptus, but in conifers functional evidence had only been obtained for MYBs. We have identified in the P. pinaster genome 37 genes encoding NAC proteins, which 3 NAC proteins could be potential candidates to be involved in vascular development (Pascual et al. 2015). The understanding of the transcriptional regulatory network associated to phenylpropanoids and lignin biosynthesis in conifers is crucial for future applications in tree improvement and sustainable forest management. This work is supported by the projects BIO2012-33797, BIO2015-69285-R and BIO-474 References: Bomal C, et al. (2008) Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. J Exp Bot. 59: 3925-3939. Craven-Bartle B, et al. (2013) A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine. Plant J, 74: 755-766. Pascual MB, et al. (2015) The NAC transcription factor family in maritime pine (Pinus pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biol, 15: 254.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AMMONIUM UPTAKE, TRANSPORT AND NITROGEN ECONOMY IN FOREST TREES Francisco M. Cánovas, Concepción Avila, Fernando N. de la Torre, Rafael A. Cañas, Belén Pascual, Vanessa Castro- Rodríguez, Jorge El-Azaz Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Spain. Email: canovas@uma.es Forests ecosystems play a fundamental role in the regulation of global carbon fixation and preservation of biodiversity. Forest trees are also of great economic value because they provide a wide range of products of commercial interest, including wood, pulp, biomass and important secondary metabolites. The productivity of most forest ecosystems is limited by low nitrogen availability and woody perennials have developed adaptation mechanisms, such as ectomycorrhizal associations, to increase the efficiency of N acquisition and metabolic assimilation. The efficient acquisition, assimilation and economy of nitrogen are of special importance in trees that must cope with seasonal periods of growth and dormancy over many years. In fact, the ability to accumulate nitrogen reserves and to recycle N is crucial to determine the growth and production of forest biomass. Ammonium is the predominant form of inorganic nitrogen in the soil of temperate forests and many research efforts are addressed to study the regulation of ammonium acquisition, assimilation and internal recycling for the biosynthesis of amino acids, particularly those relevant for nitrogen storage. In our laboratory, we are interested in studying nitrogen metabolism and its regulation in maritime pine (Pinus pinaster L. Aiton), a conifer species of great ecological and economic importance in Europe and for which whole-transcriptome resources are available. The metabolism of phenylalanine plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids and the regulation of this pathway is of broad significance for nitrogen economy of maritime pine. We are currently exploring the molecular properties and regulation of genes involved in the biosynthesis and metabolic fates of phenylalanine in maritime pine. An overview of this research programme will be presented and discussed. Research supported by Spanish Ministry of Economy and Competitiveness and Junta de Andalucía (Grants BIO2015-69285-R, BIO2012-0474 and research group BIO-114).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P2-2 NAC-MYB-BASED TRANSCRIPCIONAL NETWORK INVOLVED IN THE REGULATION OF PHENYLALANINE BIOSYNTHESIS IN P. PINASTER Mª Belén Pascual, Rafael A. Cañas, Blanca Craven-Bartle, Francisco M. Cánovas and Concepción Ávila Departamento de Biología Molecular y Bioquímica. Facultad de Ciencias. Universidad de Málaga. Campus de teatinos s/n, Málaga, Spain Email: cavila@uma.es Conifer trees divert large quantities of carbon into the biosynthesis of phenylpropanoids, particularly to generate lignin, an important constituent of wood. Since phenylalanine is the precursor for phenylpropanoid biosynthesis, the precise regulation of phenylalanine synthesis and use should occur simultaneously. This crucial pathway is finely regulated primarily at the transcriptional level. Transcriptome analyses indicate that the transcription factors (TFs) preferentially expressed during wood formation in plants belong to the MYB and NAC families. Craven-Bartle et al. (2013) have shown that Myb8 is a candidate regulator of key genes in phenylalanine biosynthesis involved in the supply of the phenylpropane carbon skeleton necessary for lignin biosynthesis. This TF is able to bind AC elements present in the promoter regions of these genes to activate transcription. In Arabidopsis, the transcriptional network controlling secondary cell wall involves NAC-domain regulators operating upstream Myb transcription factors. We have identified in the P. pinaster genome three NAC proteins as potential candidates to be involved in vascular development. One of them, PpNAC1 is expressed both in xylem and compression wood from adult trees and has been thoroughly characterized. Its role upstream the transcriptional network involving Myb8 will be discussed. The understanding of the transcriptional regulatory network associated to phenylpropanoids and lignin biosynthesis in conifers is crucial for future applications in tree improvement and sustainable forest management.